141 research outputs found

    In Search of Patient Zero: Visual Analytics of Pathogen Transmission Pathways in Hospitals

    Get PDF
    Pathogen outbreaks (i.e., outbreaks of bacteria and viruses) in hospitals can cause high mortality rates and increase costs for hospitals significantly. An outbreak is generally noticed when the number of infected patients rises above an endemic level or the usual prevalence of a pathogen in a defined population. Reconstructing transmission pathways back to the source of an outbreak -- the patient zero or index patient -- requires the analysis of microbiological data and patient contacts. This is often manually completed by infection control experts. We present a novel visual analytics approach to support the analysis of transmission pathways, patient contacts, the progression of the outbreak, and patient timelines during hospitalization. Infection control experts applied our solution to a real outbreak of Klebsiella pneumoniae in a large German hospital. Using our system, our experts were able to scale the analysis of transmission pathways to longer time intervals (i.e., several years of data instead of days) and across a larger number of wards. Also, the system is able to reduce the analysis time from days to hours. In our final study, feedback from twenty-five experts from seven German hospitals provides evidence that our solution brings significant benefits for analyzing outbreaks

    Mining geriatric assessment data for in-patient fall prediction models and high-risk subgroups

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hospital in-patient falls constitute a prominent problem in terms of costs and consequences. Geriatric institutions are most often affected, and common screening tools cannot predict in-patient falls consistently. Our objectives are to derive comprehensible fall risk classification models from a large data set of geriatric in-patients' assessment data and to evaluate their predictive performance (aim#1), and to identify high-risk subgroups from the data (aim#2).</p> <p>Methods</p> <p>A data set of n = 5,176 single in-patient episodes covering 1.5 years of admissions to a geriatric hospital were extracted from the hospital's data base and matched with fall incident reports (n = 493). A classification tree model was induced using the C4.5 algorithm as well as a logistic regression model, and their predictive performance was evaluated. Furthermore, high-risk subgroups were identified from extracted classification rules with a support of more than 100 instances.</p> <p>Results</p> <p>The classification tree model showed an overall classification accuracy of 66%, with a sensitivity of 55.4%, a specificity of 67.1%, positive and negative predictive values of 15% resp. 93.5%. Five high-risk groups were identified, defined by high age, low Barthel index, cognitive impairment, multi-medication and co-morbidity.</p> <p>Conclusions</p> <p>Our results show that a little more than half of the fallers may be identified correctly by our model, but the positive predictive value is too low to be applicable. Non-fallers, on the other hand, may be sorted out with the model quite well. The high-risk subgroups and the risk factors identified (age, low ADL score, cognitive impairment, institutionalization, polypharmacy and co-morbidity) reflect domain knowledge and may be used to screen certain subgroups of patients with a high risk of falling. Classification models derived from a large data set using data mining methods can compete with current dedicated fall risk screening tools, yet lack diagnostic precision. High-risk subgroups may be identified automatically from existing geriatric assessment data, especially when combined with domain knowledge in a hybrid classification model. Further work is necessary to validate our approach in a controlled prospective setting.</p

    The nephrology eHealth-system of the metropolitan region of Hannover for digitalization of care, establishment of decision support systems and analysis of health care quality

    Get PDF
    Background Even though a high demand for sector spanning communication exists, so far no eHealth platform for nephrology is established within Germany. This leads to insufficient communication between medical providers and therefore suboptimal nephrologic care. In addition, Clinical Decision Support Systems have not been used in Nephrology until now. Methods The aim of NEPHRO-DIGITAL is to create a eHealth platform in the Hannover region that facilitates integrated, cross-sectoral data exchange and includes teleconsultation between outpatient nephrology, primary care, pediatricians and nephrology clinics to reduce communication deficits and prevent data loss, and to enable the creation and implementation of an interoperable clinical decision support system. This system will be based on input data from multiple sources for early identification of patients with cardiovascular comorbidity and progression of renal insufficiency. Especially patients will be able to enter and access their own data. A transfer to a second nephrology center (metropolitan region of Erlangen-Nuremburg) is included in the study to prove feasibility and scalability of the approach. Discussion A decision support system should lead to earlier therapeutic interventions and thereby improve the prognosis of patients as well as their treatment satisfaction and quality of life. The system will be integrated in the data integration centres of two large German university medicine consortia (HiGHmed (highmed.org) and MIRACUM (miracum.org)). Trial registration ISRCTN16755335 (09.07.2019)

    A 'combined framework' approach to developing a patient decision aid: the PANDAs model

    Get PDF
    Background There is a lack of practical research frameworks to guide the development of patient decision aids [PtDAs]. This paper described how a PtDA was developed using the International Patient Decision Aids (IPDAS) guideline and UK Medical Research Council (UKMRC) frameworks to support patients when making treatment decisions in type 2 diabetes mellitus. Methods This study used mixed methods to develop a PtDA for use in a UK general practice setting. A 10-member expert panel was convened to guide development and patients and clinicians were also interviewed individually using semi-structured interview guides to identify their decisional needs. Current literature was reviewed systematically to determine the best available evidence. The Ottawa Decision Support Framework was used to guide the presentation of the information and value clarification exercise. An iterative draft-review-revise process by the research team and review panel was conducted until the PtDA reached content and format `saturation’. The PtDA was then pilot-tested by users in actual consultations to assess its acceptability and feasibility. The IPDAS and UKMRC frameworks were used throughout to inform the development process. Results The PANDAs PtDA was developed systematically and iteratively. Patients and clinicians highlighted the needs for information, decisional, emotional and social support, which were incorporated into the PtDA. The literature review identified gaps in high quality evidence and variations in patient outcome reporting. The PtDA comprised five components: background of the treatment options; pros and cons of each treatment option; value clarification exercise; support needs; and readiness to decide. Conclusions This study has demonstrated the feasibility of combining the IPDAS and the UKMRC frameworks for the development and evaluation of a PtDA. Future studies should test this model for developing PtDAs across different decisions and healthcare contexts

    Research Strategies for Biomedical and Health Informatics: Some Thought-provoking and Critical Proposals to Encourage Scientific Debate on the Nature of Good Research in Medical Informatics

    Get PDF
    Summary Background: Medical informatics, or biomedical and health informatics (BMHI), has become an established scientific discipline. In all such disciplines there is a certain inertia to persist in focusing on well-established research areas and to hold on to well-known research methodologies rather than adopting new ones, which may be more appropriate. Objectives: To search for answers to the following questions: What are research fields in informatics, which are not being currently adequately addressed, and which methodological approaches might be insufficiently used? Do we know about reasons? What could be consequences of change for research and for education? Methods: Outstanding informatics scientists were invited to three panel sessions on this topic in leading international conferences (MIE 2015, Medinfo 2015, HEC 2016) in order to get their answers to these questions. Results: A variety of themes emerged in the set of answers provided by the panellists. Some panellists took the theoretical foundations of the field for granted, while several questioned whether the field was actually grounded in a strong theoretical foundation. Panellists proposed a range of suggestions for new or improved approaches, methodologies, and techniques to enhance the BMHI research agenda. Conclusions: The field of BMHI is on the one hand maturing as an academic community and intellectual endeavour. On the other hand vendor-supplied solutions may be too readily and uncritically accepted in health care practice. There is a high chance that BMHI will continue to flourish as an important discipline; its innovative interventions might then reach the original objectives of advancing science and improving health care outcomes

    Aktuelle Standards für die Repräsentation gesundheitsrelevanter Parameter

    No full text
    • …
    corecore